The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons

نویسندگان

  • M B Lande
  • J M Donovan
  • M L Zeidel
چکیده

Several barrier epithelia such as renal collecting duct, urinary bladder, and gastric mucosa maintain high osmotic pH and solute gradients between body compartments and the blood by means of apical membranes of exceptionally low permeabilities. Although the mechanisms underlying these low permeabilities have been only poorly defined, low fluidity of the apical membrane has been postulated. The solubility diffusion model predicts that lower membrane fluidity will reduce permeability by reducing the ability of permeant molecules to diffuse through the lipid bilayer. However, little data compare membrane fluidity with permeability properties, and it is unclear whether fluidity determines permeability to all, or only some substances. We therefore studied the permeabilities of a series of artificial large unilamellar vesicles (LUV) of eight different compositions, exhibiting a range of fluidities encountered in biological membranes. Cholesterol and sphingomyelin content and acyl chain saturation were varied to create a range of fluidities. LUV anisotropy was measured as steady state fluorescence polarization of the lipophilic probe DPH. LUV permeabilities were determined by monitoring concentration-dependent or pH-sensitive quenching of entrapped carboxyfluorescein on a stopped-flow fluorimeter. The relation between DPH anisotropy and permeability to water, urea, acetamide, and NH3 was well fit in each instance by single exponential functions (r > 0.96), with lower fluidity corresponding to lower permeability. By contrast, proton permeability correlated only weakly with fluidity. We conclude that membrane fluidity determines permeability to most nonionic substances and that transmembrane proton flux occurs in a manner distinct from flux of other substances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Leaflet Asymmetry in the Permeability of Model Biological Membranes to Protons, Solutes, and Gases

Bilayer asymmetry in the apical membrane may be important to the barrier function exhibited by epithelia in the stomach, kidney, and bladder. Previously, we showed that reduced fluidity of a single bilayer leaflet reduced water permeability of the bilayer, and in this study we examine the effect of bilayer asymmetry on permeation of nonelectrolytes, gases, and protons. Bilayer asymmetry was ind...

متن کامل

Water and solute permeability of rat lung caveolae: high permeabilities explained by acyl chain unsaturation.

Caveolae are invaginated membrane structures with high levels of cholesterol, sphingomyelin, and caveolin protein that are predicted to exist as liquid-ordered domains with low water permeability. We isolated a caveolae-enriched membrane fraction without detergents from rat lung and characterized its permeability properties to nonelectrolytes and protons. Membrane permeability to water was 2.85...

متن کامل

Water and solute permeabilities of medullary thick ascending limb apical and basolateral membranes.

The medullary thick ascending limb (MTAL) reabsorbs solute without water and concentrates [Formula: see text] in the interstitium without a favorable pH gradient, activities which require low water and NH3 permeabilities. The contributions of different apical and basolateral membrane structures to these low permeabilities are unclear. We isolated highly purified apical and basolateral MTAL plas...

متن کامل

The Ultrafiltration Performance of Cellulose Acetate Asymmetric Membranes: A New Perspective on the Correlation with the Infrared Spectra

Integral asymmetric cellulose acetate (CA) membranes were casted by phase-inversion with formamide varying content - 22, 30 and 34% - as pore promoter. These membranes, CA-22, CA-30 and CA-34, were analyzed by infrared spectroscopy in attenuated total reflection mode (ATR-FTIR) to investigate the porous membrane matrix influence on the polymer/water/solute interactions and the selective ultrafi...

متن کامل

Evaluation of Relative Membrane Permeability of Sorghum (Sorghum bicolor) Affected Super Absorbent Polymer and Water Deficit Conditions

Sorghum is among the most important forages used in arid and semi-arid regions of south-eastern Iran. Application of some materials such as super absorbent polymer (SAP) in soil can increase soil water storage capacity and increase water use efficiency. The aim of the study was to estimate the relative membrane permeability of sorghum under irrigation regimes and superabsorbent polymer applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 106  شماره 

صفحات  -

تاریخ انتشار 1995